923 research outputs found

    Anomalous spin-splitting of two-dimensional electrons in an AlAs Quantum Well

    Full text link
    We measure the effective Lande g-factor of high-mobility two-dimensional electrons in a modulation-doped AlAs quantum well by tilting the sample in a magnetic field and monitoring the evolution of the magnetoresistance oscillations. The data reveal that |g| = 9.0, which is much enhanced with respect to the reported bulk value of 1.9. Surprisingly, in a large range of magnetic field and Landau level fillings, the value of the enhanced g-factor appears to be constant.Comment: 4 pages, 3 figure

    Apparent Metallic Behavior at B = 0 of a two-dimensional electron system in AlAs

    Full text link
    We report the observation of metallic-like behavior at low temperatures and zero magnetic field in two dimensional (2D) electrons in an AlAs quantum well. At high densities the resistance of the sample decreases with decreasing temperature, but as the density is reduced the behavior changes to insulating, with the resistance increasing as the temperature is decreased. The effect is similar to that observed in 2D electrons in Si-MOSFETs, and in 2D holes in SiGe and GaAs, and points to the generality of this phenomenon

    The hibernation-derived compound SUL-138 shifts the mitochondrial proteome towards fatty acid metabolism and prevents cognitive decline and amyloid plaque formation in an Alzheimer’s disease mouse model

    Get PDF
    Background: Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease worldwide and remains without effective cure. Increasing evidence is supporting the mitochondrial cascade hypothesis, proposing that loss of mitochondrial fitness and subsequent ROS and ATP imbalance are important contributors to AD pathophysiology. Methods: Here, we tested the effects of SUL-138, a small hibernation-derived molecule that supports mitochondrial bioenergetics via complex I/IV activation, on molecular, physiological, behavioral, and pathological outcomes in APP/PS1 and wildtype mice. Results: SUL-138 treatment rescued long-term potentiation and hippocampal memory impairments and decreased beta-amyloid plaque load in APP/PS1 mice. This was paralleled by a partial rescue of dysregulated protein expression in APP/PS1 mice as assessed by mass spectrometry-based proteomics. In-depth analysis of protein expression revealed a prominent effect of SUL-138 in APP/PS1 mice on mitochondrial protein expression. SUL-138 increased the levels of proteins involved in fatty acid metabolism in both wildtype and APP/PS1 mice. Additionally, in APP/PS1 mice only, SUL-138 increased the levels of proteins involved in glycolysis and amino acid metabolism pathways, indicating that SUL-138 rescues mitochondrial impairments that are typically observed in AD. Conclusion: Our study demonstrates a SUL-138-induced shift in metabolic input towards the electron transport chain in synaptic mitochondria, coinciding with increased synaptic plasticity and memory. In conclusion, targeting mitochondrial bioenergetics might provide a promising new way to treat cognitive impairments in AD and reduce disease progression
    • …
    corecore